当前位置:首页 > 成功案例
本研究发表于《Nature Communications》期刊,题为《增强电荷载流子传输和缺陷钝化的钝化层,用于高效钙钛矿太阳能电池》。研究团队开发了一种创新的二元协同后处理(BSPT)策略,通过混合4-tBBAI和苯丙基碘化铵(PPAI),并旋涂于钙钛矿表面,形成高质量钝化层,有效解决了传统钝化方法中电荷传输受阻的瓶颈。该策略成功制备出经过认证的正式(n-i-p)平面结构钙钛矿太阳能电池(PSC),实现了高达26.0%的功率转换效率(PCE),并展现出优异的稳定性,在连续最大功率点追踪450小
武汉大学 物理科学与技术学院柯维俊团队最新发表研究,这项研究的主要成就包括:效率提升:通过使用氧氨基酸钾盐(OAPS)作为添加剂,研究人员成功提高了锡铅混合窄带隙钙钛矿太阳能电池(PSCs)的功率转换效率(PCE),达到了22.04%。稳定性改善:OAPS的引入显著改善了钙钛矿薄膜的稳定性,未封装的设备在氮气环境中储存3072小时后仍保持了91%的初始PCE。全钙钛矿串联太阳能电池(TSCs)的性能:研究还展示了OAPS在全钙钛矿串联太阳能电池中的应用,其中两端和四端的配置分别达到了27.17%
前言香港理工大学 Prof.李刚团队在《Advanced Functional Materials》中发表了一项研究结果。混合供体/受体材料。关于非共轭环受体有机太阳能电池(OSCs)的深入研究,研究人员通过在受体前体中加入20 wt%的PTQ10聚合物供体,将器件的功率转换效率(PCE)从15.11%提升至16.03%。然而,使用相同比例的PM6却导致效率显著下降,表明在考虑垂直分布时热力学因素的重要性。通过将活性层材料更换为PBQx-TF/TBT-26和PTQ11,并使用相同的加工策略,研究
有机-无机混合钙钛矿太阳能电池(PVSCs)效率自2009年3.8%提升至认证PCE 26.15%,展现竞争潜力。然而,溶液处理材料不稳定性阻碍商业化。溶液老化影响钙钛矿层性质及PVSCs性能,故开发稳定前驱溶液至关重要。 南昌大学陈义昌团队于Angewandte发表的研究(DOI: 10.1002/anie.202411708)中,探讨提升钙钛矿太阳能电池(PVSCs)前驱溶液稳定性的创新方法。其中提出虽然有多种延长保质期策略,研究团队发现两步法前驱溶液老化更显着,因异丙醇更易引发副反应,针对
钙钛矿太阳能电池(PSCs)因低成本、高PCE和低温制造等优势成为光伏研究焦点。近期PCE已超26%,展现商业化潜力。倒置钙钛矿太阳能电池PSCs因成本效益高、适用于大规模印刷而受青睐。其中,电子传输材料(ETM)在电子收集、缺陷缓解和保护钙钛矿层方面至关重要。倒置钙钛矿太阳能电池PSCs中常用的ETL材料C60需要耗时昂贵的热蒸发沉积,不利于大规模生产。为解决此问题,我们设计了创新的溶液可加工ETM,将非富勒烯受体片段嫁接到C60上。BTPC60表现出优异的溶液加工性能和分子堆栈,形成高电子迁
在有机太阳能电池(OSCs)领域,实现高效率和稳定性仍然是一项重要挑战。相较于常规结构的太阳能电池,倒置结构的OSC展现出巨大潜力,能够将高效率与增强的稳定性结合。然而,尽管稳定性有所提高,倒置结构OSC的效率仍落后于传统结构OSC,主要受限于电子传输层(ETL)的性能。 南开大学暨纳米科学与技术研究中心陈永胜老师团队于2024年9月号Advanced Functional Materials (Volume 34, Issue 36,DOI: 10.1002/adfm.202409699 )探